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ITERATED SPLITTING METHODS OF HIGH ORDER FOR
TIME-DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS*

P. J. VAN DER HOUWENY

Abstract. Nonlinear Chebyshev iteration is applied for solving the implicit relations which arise when
an implicit linear multistep method is used in order to integrate semi-discrete initial value problems for
partial differential equations. The approximate inverse occurring in the defect correction process is obtained
by employing splitting methods. In order to accelerate convergence the Chebyshev iteration process is tuned
in such a way that the lower frequencies in the iteration error are strongly damped without using a large

number of iterations. For moderate accuracies this method is already markedly more efficient then conven-
.tional ADI methods.
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1. Introduction. Consider an initial-boundary value problem in two space
dimensions and assume that this problem can be semi-discretized (by finite differences
or finite element methods) into an explicit system of ordinary differential equations
of the form

(1.1)

14

dy -
dr? _f(t’ }’), 1/,—_—1,

where the boundary conditions are lumped into the right-hand side and the initial
condition is of the form

di i .
(1.2) )=y, =0, vt

We assume that the Jacobian matrix 9f/dy has negative eigenvalues.

Suppose that a linear multistep method is chosen for the integration of (1.1).
Then in each integration step we have to solve a, usually nonlinear, system of equations
of the form

k
(1'3) y— bOTVf(tn+l, }') = lz [alyn+1—l+ blTVf(tn+1—ly Yn+l—-l)]:
=1

where 7 is the stepsize 1,4, —1,, Y, is the numerical approximation to y(t,) and {a;, b;}
are coefficients specifying the k-step method chosen. The solution of (1.3) is denoted
by 7, the approximation to 7 obtained in actual computation by y,+;. We will write
(1.3) in the compact form

(1.3 Ly=53.

In this paper we analyse a special class of nonlinear Chebyshev iteration methods
for solving (1.3"). The special features of this iteration process are (i) the application
of a three-term Chebyshev recursion, (ii) the use of splitting functions in the definition
of the approximate inverse of L, (iii) the strong damping of the lower frequencies by
the amplification operator.

Since for computational reasons one wishes a relatively low number of iterations,
the iteration result may differ considerably from the solution of (1.3). Therefore, we
will also consider the stability of the iteration result for a class of model problems.

* Received by the editors November 25, 1981, and in final revised form November 22, 1983.
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636 P. J. VAN DER HOUWEN

Finally, a few numerical experiments will be reported comparing the method
proposed in this paper with conventional splitting methods.

2. The iteration error. Suppose we want to solve the problem
(2.1) Ly=
where L is a (nonlmear) operator in R, and X a given vector. We will assume that L
has an inverse L. For such problems one may define the iteration process (cf. Stetter
)
(2.2) Y=y s 4+8,- Ly -L7'8,  j=0,1,--,
where y ) is an approximation to the solution 7 of (2.1), 3 j are approximations to

and L are approximations to L~ L

In this paper we will consider the two-step version of (2.2),
Y(JH)=,Uvj)’(])"'(l"Mj)y(lﬂl)+)tj[L;1(2+2j"L)’(]))’f/;lij],
2 j=0,1,2,- -+,

where wo=1, and p; and \; are parameters which will be used in order to accelerate
the convergence.

If the operators ;" and L are differentiable then the iteration error &=y —q
of (2.3) satisfies a relation of the form

(2.4) &1 =1~ /\'(E'—I)IL']“?;"" (1—pj)ej—r+ O(”5j||2)
where (L 7')" and L' denote the derivatives (Jacobian matrices) of the operators L !
and L evaluated at Z and 7, respectively. We remark that the second order term in
(2.4) vanishes if L and L are affine operators Furthermore, since L and L are
supposed to be the left hand side operator in (1.3) and its approximation, respectlvely,
we expect Ljy to be of the form I —bofr"f(t,,ﬂ,y) with f=~f. In such cases the order
constant in (2.4) will contain a factor 7. Finally, we observe that by defining
(2.5) 3,=Ly?
and by writing (according to the inverse mapping theorem)

(L~ =L,
the recurrence relation (2.4) may be written as
(2-4l) 1= [/Lj_ Aj(i})—lL,]Ej + (1 - /.L_,) Ei—1 + O(” Ej”2),

where L’ is evaluated at y“. In many cases this error equation is more convenient
than (2. 4) because we often cannot explicitly derive the matrix (L 1) whereas the
matrix (L )~ is rather easily obtained.

In this paper it will be assumed that 3, is defined by (2.5).

2.1. Chebyshev iteration. In the special case where L} does not depend on j and

L, , L are affine, the process (2.3) reduces to the familiar polynomlal iteration method
[12]. We find

(2.4") €jr1 =Pj+1(ff'_1L')50, j=0,1,---,

where P; is a polynomial of degree j in L'~'L’ generated by the recurrence relation

(2.6) P(@)=1,  Pui(@)= (=A@ P(a)+(1=p)Pps(a),  j=0,1,- -
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We will assume that the iteration matrix L' 'L’ has its eigenvalues « in a positive
interval. Then all eigenvector components in the iteration error corresponding to
eigenvalues in the interval [a, b] are maximally damped if we choose

=T}(w0+w1a) w_b+a . = 2
Ti(we) ° ° b—a ' a—b

2.7) Py(a)

Since T; satisfies a recurrence relation of the form (2.6) we can explicitly derive the
parameters u; and A; The resulting method is the well-known Richardson method [12]
(or Chebyshev iteration method) applied to the preconditioned problem (L} does not
depend on j because it is affine)

(2.1) LLy=L["1's.

If L;™" does not depend on j but L;*, L are nonlinear, we formally may define the
parameters w; and A; by (2.6) and (2.7). Then, neglecting second order terms, (2.4")
presents a first order approximation to the error equations. Thus, for sufficiently close
initial approximations y'® the error equation (2.4”) can be used in the analysis of the
iteration process.

In this paper it will be assumed that I:,’~ does not depend on j.

2.2. Damping of low frequencies and consistency. In the usual application of
iteration processes of the form (2.3), one chooses the parameters such that all frequen-
cies in the initial error &= y” - are damped by roughly the same factor. However,
if the problem (2.1) originates from a partial differential equation, then often the
solution mainly consists of low frequency modes so that one chooses the discrete
problem (2.1) such that its solution n does not contain high frequencies (for example,
the backward differentiation formulas). Thus, if the initial approximation y does not
contain high frequencies (e.g. if y*” is obtained by extrapolation of preceding y, values)
then &, will also be free of high frequencies. In such cases only the low frequencies
should be strongly damped whereas the high frequencies need only marginal damping.
If the low frequencies correspond to large eigenvalues of the iteration matrix this can
be achieved by choosing a » @ and b = b where [a, b] denotes the (positive) spectrum
of the iteration matrix. As a consequence, the damping of the low frequencies increases
considerably as is immediately clear from (2.7) which yields after m iterations the
damping factor

(28) D= max |Pp(a)]= T;l(‘g:t:) = {“’Sh (2’”[ \/E+ O(bfa)])}—l

as a/(b—a)« 1 (<.025 say). It turns out that in most applications a/(b—a) is rather
small so that for prescribed damping D the number of iterations m can be found from
the approximate expression for D, i.e.

(2.8") ~ arccosh (1/ D) -1 \/ bﬁaarccosh (-l)
) m arccosh [(b+a)/(b—a)] 2 a D/’

It is the purpose of this paper to derive iteration processes of the form (2.3) which
strongly damp the low frequency modes and which have a modest damping of the
higher frequencies. In the analysis we assume that only a few iterations are performed;

otherwise the method becomes too expensive. As a consequence, y'™ may differ
considerably from the solution of (1.3). This implies that one should consider the
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consistency of the result y'™ as 7->0. Evidently, the local error " = y(t,.1) at .4
consists of the local error 7 —y(t,+;) of the generating multistep formula and the
iteration error &,,, approximately given by (2.4").

In our applications the matrix L' 'L’ converges to the matrix a,I as 70, i.e.

(2.9) L' =a)l+7'B(7), r=zl,

where B(7) is a nonvanishing, uniformly bounded matrix as 7 0. Then

(2.10)  en =P, (L' 'L)eo=[Pm(@o)I + 7P, (ao)B(r) +3i7*Ph () B*(7)+- - -leo
From the definition (2.7) of P,,(a) we derive that

em = T (W) [ T (Wo+ wiag) + wy T (Wo+ wyao) 7"B(7)

+3wiTh(wo+ wiag) 7' B (1) +- - -1

(2.10")

Introducing the damping factor D and observing that

' b—a [JZ+JZ]2 D

we obtain

lemll =D [|T (W0+W1ao)|+\/————IT'm(Wo‘*'Wlao)HIB(T)"

if_r " 50012 ]
+2( 5/—2) ITo (ot waao) B+ - |l

where B(r) denotes the “normalized” matrix 2B(7)/[v a++y 3]2 and D is assumed to
be a given number independent of = (e.g. D=1/10).
The estimate (2.11) is suitable for practical use if 7 is sufficiently small, i.e.

/D2
BT

In this range of integration steps the iteration error &,, can be decreased if we are able
to choose T,,(wy+ wyag) =0, i.e.

(2.11)

(2.12) 7' <

+
(2.13) W0+ Wiag=CO0S (2l 1
2m

w), le{0,1,---,m—1},

or equivalently

_ 209+ blcos (2{+1)w/2m)—1]
cos ((2l1+1)7/2m)+1 ’

(2.13") le{0,1,---,m—1},

where we assume

(2.14) b> a0>1b(1—-cos (2l+17r)>.
2 2m

Substitution of (2.13) into (2.11) and using the relation
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yields

D rp 2
215) |, éD[ m TIB(n| [T_Bf_(_”] ] 0.
@13 Jlen sin (204 1)7/2m) %D/2 +O( YD/2 > Ieoll s 7

Firstly, this estimate shows that for fixed damping factor D
17 = 3(tne) [ = e+ O(7) = O(#* +7%°*) a5 70,

where p and g are the orders of consistency of the generating multistep method and
of the predictor formula used for y‘®. Thus the order of consistency p is given by

(2.16) p=min{p,q+r}.

Notice that p=min {p, g} if the consistency condition (2.13) is not satisfied.

Secondly, we observe that for given D the value of m should be minimized, that
is in (2.8') the value of (b—a)/a should be made as small as possible. In view of
(2.13') this means that

b—a_ 2(b_ao)
a  2ap+b(cos ((21+1)m/2m)—1)

should be minimized. This implies that /=0 is the best choice.

Given the operator L and the approximating operators I:,-, the iteration parameters
in the splitting method (2.3) can be explicitly derived from (2.6), (2.7) and (2.13')
with b = b and I =0. The only free parameter left is the number of iterations m which
will be used to satisfy stability conditions (see § 4) and to monitor the damping of the
low frequencies.

3. The approximate inverse. In order to define the approximate inverse L; ' for
the problem (1.1) we use the formalism developed in [4] and introduce the splitting
function F(t, u, v) which is such that

(3.1) F(t,y, y)=f(ty).

This rather general splitting function includes a number of well-known splittings such
as the ADI splittings [6] and the hopscotch splittings [1]. It is convenient to introduce
the Jacobian matrices
,OF LoF

(32) Z] = bo’T 'a_l';, 22 = bo‘T ‘a_;, Z= Z] +Z2,

which are both evaluated at (#,.1, 7, 7). The eigenvalues of Z, Z will be denoted by
z; and z, respectively. We assume that Z has negative eigenvalues in the interval
[—S, 0) and that the algebraically large eigenvalues correspond to eigenvectors of low
frequency. The spectral radius of 8f/dy is given by S/by7" and will be denoted by o.

3.1. Successive corrections.
3.1.1. One-stage approximations. A relatively simple class of methods is based
on the approximate inverse L;': x> y defined by the one-stage formula

(3.3) 0y +(1=0)y? =bem"F(tniy, » y ) =1, @ #0.

Thus, in addition to the parameter m we also have the parameter o optimizing the
splitting method.
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From (3.3) we derive that
(3.4) D =[o-Z1I-2Z,— Z,].

Examples of splitting functions which are suitable for use in (3.3) are the Jacobi and
Gauss-Seidel splittings.

By writing (3.4) in the form (2.9), that is

. “Tw—10F @
oy rwelgeae ] [elE)
® ou w odu Jv

we see that ag=1/w, r=v and that B(7) is uniformly bounded as r-0. Hence, the
error equation (2.15) applies provided that (2.14) holds:

1 2

<< .

b~ " b(1—cos (m/2m))

Within this range of w-values we try to make the factor D sufficiently small. In addition,

however, we require that the interval [a, b] contains sufficiently many eigenvalues of
eigenvectors of low frequency.

Let us consider the important case where Z, is given by

(3.5)

(3.6) Z,=-—6SL
Then

_ 2+ wb(cos (m/2m)—1) s 1+5 1
(3.7) " w(cos(m/2m)+1) b=b wt0S T wtos

The eigenvalues corresponding to the lower frequencies are in the neighbourhood of
a. In Fig. 3.1 the corresponding polynomial P,,(e) is illustrated for m =2.

1

v
R

o e —

FI1G. 3.1. The polynomial P,(a) for m=2.

If §=0 the iteration process does not contain implicit relations and can be
considered as an explicit Runge—Kutta method of a special form. Related methods
were analysed in [5]. If 6#0, e.g. 6 =3, the iteration process only contains scalarly
implicit relations which may be attractive from a computational point of view (notice
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that this process is identical to nonlinear Jacobi iteration if diag[df/dy]=—6SI).
However, from Fig. 3.1 we conclude that choosing (b—ad)/bh small means that all
eigenvectors of low frequency are not damped unless 6S is so small that d=a. In
practice, 6S = 60byr”0 is usually rather large because the integration step 7 is much
greater than o~ /%, o being the spectral radius of af/dy. Hence in order to damp low
frequencies we should choose @ such that d= g, that is

. 26
1—cos (w/2m)’

This value for w satisfies the inequality (3.5) for all 6 > 0. Substitution in (3.7) yields
(b—a)/a=S so that for S>»1 (cf. (2.8"))

(3.8)

1 1
3.9 ~ =
(3.9) m 5 S arccosh ( D)'

Unless D=1 this value for m is extremely large because of the usually large values
of S.

3.1.2. Two-stage approximations. In this section iteration matrices are considered
in which the large eigenvalues correspond to eigenvectors of low frequency. This
enables us to get a strong damping of the lower frequencies without an extremely
large number of iterations.

Consider the operator I:j" :x— y defined by the two-stage formula
(310)  wy+(1=w)y*~byr"F(lns1, ¥, ¥*) =X, #0,3
. . w 5.
(311)  wy*+ (1= )y~ Bt F(tner, y7, y¥) = 3, :

The corresponding splitting method (2.3) again possesses the two free iteration para-
meters m and w. An elementary calculation leads to the iteration matrix

(3.12) L' =Qo—1D[w—Z1 o—2Z,1I-Z,- Z,].

By writing (3.12) in the form (2.9) we see that

(3.13) a0=2w;1, r=v

(0]

and that B(7) is uniformly bounded as 7 - 0. Thus, (2.15) holds provided that inequality
(2.14) is satisfied. This inequality gives an interval of w-values and within this interval
one should try to minimize the factor (b—a)/b occurring in (2.8") and at the same
time to include sufficiently many eigenvalues of low frequency eigenvectors in the
interval [a, b].

In the following we consider in more details the model problem where Z and
w— Z; share the same eigensystem of which the eigenvectors of low frequency corres-
pond to eigenvalues of small magnitude. Then from (2.13’) and (3.12) we find (with
1=0)

(3.14a) 220 —1) +w*b(cos (/2m)—~1)
‘T w?(cos (7/2m)+1) ’
(3.15) a=Qw-1) S+1 B-:Zw-l S+1

(§/2+w)? o S+to’
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where we have assumed that @ = ay= b, that is
(3.16) 1so=i1+/25+1].

Since S is usually rather large we choose instead of b = b

~ - 1
(3.14b) b= §b=2w 1[1+O(-—>] as S 0.
o S

a =2m— 1 2+w(cos (w/2m)—1)

? cos (7r/2m) +1 @

O R IO ———

FiG. 3.2. The polynomial P, () for $» 1.

In Fig. 3.2 the corresponding polynomial P,,(«) is illustrated for S > 1. Evidently, the
low frequency eigenvectors have eigenvalues in the neighbourhood of @, which is
different from the situation in the preceding section where these eigenvalues are in
the neighbourhood of a. In order to see what eigenvalues correspond to the damped
eigenvectors we show in Fig. 3.3 in the (z,, z;)-plane the region corresponding to the
interval @ = o = b. The magnitude of this damping region can be characterized by the
quantity

(3.17) g @HV1-a)-1  _20-1

1-J1-a ’ w?

(the inequality for a follows from «(0, 0) = a).
In the following it is convenient to use the directly interpretable parameter S*
instead of w. From (3.17) it follows that

_(Qo- 1)(28*+1)

(3.17) IR

1Sw={1+V25%+1]

and from (3.14a) we find that w and S* are related by the equation

(3.18)  (28*+ 1)(cos (i—) + 1)w2 = [2+w<cos (fn_) - 1)](S*+w)2.
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2,7

S* we write

(3.19)

—§*
217
t v
t
| !
! |
; .
I !
P
L
| |
X )
; i
H :
iy, SN !
e 1
& .
e,
7
\ |
a(z,z2)=a <
Z|
|
=
el
A
+

N
N

AN

2z

&

—> 2,

SN

2w—1

.‘ A

+w

AN

_o(+V1-a)-1_

. —S*
1-V1-a

—28*

A

FI1G. 3.3. Region of damping in the (z,, z,)-plane.

D=T:,,‘(

w cos (7/2m) + 1)

w—1

In order to compute the value of the damping factor D for given values of m and

In Table 3.1 the values (w, D) are given satisfying (3.18) and (3.19) for various values
of m and S*. All w-values turn out to be in the range (3.16). Choosing an appropriate
value for S*, this table gives the number of iterations required to obtain the desired
damping factor D. However, as we will see in § 4, the parameters (m, $*) have also
to satisfy the stability conditions so that a definite choice has to be postponed.

(w; D)-values for various values of m and S*.

TABLE 3.1

S*

m=1 m=2 m=3 m=4 m->

1 (1.15; .15) (1.29;.01) (1.33;1073) (1.34;7,0-9) (1.37; 2 exp (—2.5m))

2 (1.26;.26) (1.50;.03) (1.56; 4,4-3) (1.58; 4,9-%) (1.62; 2 exp (—=2.1m))

4 (1.40; .40) (1.80;.07) (1.90; .01) (1.94; 2,572 (2.00; 2 exp (—=1.7m))

6 (1.49; .49) (2.02;.10) (2.17;.02) (2.23; 4,573 (2.30; 2 exp (—1.6m))

8 (1.55;.55) (2.20;.12) (2.39;.03) (2.46; 6,4-3) (2.56;2exp (—1.5m))
10 (1.60; .60) (2.36;.15) (2.59;.04) (2.67;9,0™3) (2.79; 2 exp (—1.4m))
50 (1.87;.87) (3.84; .41) (4.67;.16) (5.02;.06) (5.52; 2 exp (—0.9m))
100 (1.93;.93) (4.58;.55) (5.99; .26) (6.63;.11) (7.59; 2 exp (—=0.7m))
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For large values of m (and $* not extremely large) the relations (3.18) and (3.19)
can be approximated by the equations

i +1
w=%[1+~/2$*+1], D=2exp [~m arccosh (-2—_—1)]

Substitution of the expression for @ into (3.19) yields for m

1+V28*+1\ ™ 1
m=|arccosh | 1 +2————— arccosh D

(3.20) S

=~ .42[$*]"*In (%) as D« land S*»1.

A comparison of (3.20) and (3.9) reveals that the number of iterations m, of the
one-stage operator and the number of iterations m, of the two-stage operator, needed
to produce the same damping D, are related by the formula

4 *

m,=.82 SEm as D« 1and S*»1.

Thus, even for $* =, the two-stage formula is usually much more efficient.

3.1.3. Multistage approximations. Next consider the operator f,j"l :x -y defined
by the ri-stage formula (compare similar operators employed in linear elliptic equations
e.g. in [12, p. 518])
yi=y0),
w0y ¥+ (1= @) §E 1= bom"F(tusr, Y5, FE1) =%,
oFF 1+ (1= w)yE 1= bom F(tas1s Y1, 70 =2,

y=yk

(3.21) i=1,2,---,m,

The corresponding iteration matrix is given by

. 1
(3.22) L,—lLl =] .H~ [O)i - Zl]ml[w,- - Zz]_l[(l)i -1 +Zl][w, -1+ Zz]
which can be written in the form (2.9) with

(3.23) ao=1—11 (-"-’—:—1)2 r=v

i=1

and B() uniformly bounded in 7. Assuming that the parameters w; satisfy the inequality
(3.16) and restricting our considerations to the same class of model problems as in
the preceding section, we find that

(3.24) b=1+

w,—*ls—wl+1 [S~w,+1]232w,—1
i=]

as §—>
w St S+ w; ’

w)

where ! is such that (w,—1)/; is maximal. We define a by (2.13) and put

Zwi_l

w;

(3.25) b =max
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The damping region a = a(z;, z;) = b in the (z;, z,)-plane contains the region defined
by

(3.26)

0 le=ta <= =12

i=1

w; — Z;

We now use the following lemma.
LemMma 3.1. In the interval A= x = B the function

mox—0, A (i-1)/(m—1)
= —— L= —_— =
Um(X) iI=11X+0,-’ 6; B[B] , O0<A<B, mz2

l_Cm 2 A 1/2(m—1)
[1+cm]’ C’"“[E] :

Proof. See Young [12,p.528]. O
The parameters 6; were proposed by Wachspress [10]. We apply this lemma with

is bounded by

x=%—z]'? =%? B=%+S*, m==r;l7 oizwi—%-
Thus, if
(3.27) w; =3+328*+1)URV/0A=D =g o =D,
then

1-C,|? "
= 3 L =[2§% 4 1] 1/20R~1)
[1+C,ﬁ] Cr=[28%+1]

for —§* = z;=0 (note that the left-hand side is bounded by one for all negative values
of z;). Hence, if a is chosen such that

"
I1
i=1] W;—Z;

1-C;:1?
(3.28) «/1-—a—[1+crﬁ] ,
ie.
_8CA(1+C%)
(1+Cp* °

then (3.26) is satisfied for all (z,, z,) in the square —S*=z;, z, =0. However, a is
also prescribed by (2.13'), so that the consistency equation

8Cs(1+C%) 2+b(cos (w/2m)—1) . 2
(1+Cp)* cos(w/2m)+1 ° 1+ C%(m-f')',

Cn=[28*+1]71/207"D

(3.29)

should be satisfied (notice that ay=1 because w,; =1). Here, $* cannot be chosen
freely as in the preceding section. In Table 3.2 a few values of (S*, D) are given,
where S* satisfies (3.29). The asymptotic error estimate (2.15) holds for the (m, D)-
values occurring in this table.

In order to compare the efficiency of the two-stage operator and the multistage
Wachspress operator we consider the number of iterations given by (3.20) and the
quantity mm giving the number of “iterations” of the present process. In terms of S*
and D we have

. . arccosh (1/ D) m L4t ( 2 )
. = =—[28%* /4(m 1)1 =
(3.30) m = (bta) (b—a) 4 25 "\D

as D« 1and S*>»1.
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TABLE 3.2
(8*; D) values for various values of m and m with
S* satisfying (3.29).

m=2 m=3 m=4

m=1 (1) (005 1) (005 1)
m=2 (9;.080) (223;.093) (4805;.094)
m=3 (3.7;8,03) (47;.013) (482;.014)

Taking (3.20) and (3.30) as a measure for the computational effort of the two-stage
and multistage methods, we may conclude that the two-stage approximation should
be used if (3.20) yields a lower value than (3.30). In particular, we compare the
D-values obtained for the two-stage operator for the same S*-value and check if the
number of iterations equals the value of mr listed in Table 3.2. Writing m = m,;m,
the two-stage operator yields values given by Table 3.2°, showing that the two-stage
operator has a considerably stronger damping in the same damping region unless $*
is extremely large.
TABLE 3.2/

(8* D) values satisfying (3.18) and (3.19) for
various values of m = m;m,.

my=2 my,=3 my=4

my=1 (c0;1) (c051) (00;1)
m;=2 (9;.008) (223;.05) (4805;.2)
my=3 (3754105 (47;5,0%)  (482;4107)

3.1.4. Recommendation of a successive-correction scheme. In the preceding sub-
sections it has been shown that the two-stage approximation (3.11) to the operator
L7 is expected to be superior both to the one-stage approximation (3.3) and to the
multistage approximation (3.21). Therefore, we conclude this section by writing down
explicitly the complete scheme based on the recommended two-stage operator (3.11).
Firstly, however, we simplify the scheme (2.3) by using (2.5) and (3.11). Let x:= Ejy‘j)
then it follows from (3.11) that x and y'” are related to each other by

x =0y + (1= 0)y* = bo7"F(trer, ¥, y*)
=0y*+ (1= )y = bor"F (tas1, ', y*).
Hence, y* =y so that
Ly ==y = bor"F (11, Y2, y2) = P~ byr*f (1, y9) = Ly,
Substitution of this and of (2.5) into (2.3) yields the scheme
(331) YU V=(u=2)y P+ (11— )y PH+ALS,  j=0,1,---,m—1.
Again using (3.11) yields
(3.32a) y‘“” = (Mj_)\j))’(j)“‘(1“I-Li))’(j—l)+)tj)’., }“"’10, 1, --,m-1,
where y® is to be computed by solving the system

wy.+(1_w)y*_b07vF(tn+ls )’., y*) =27

3.32b . .
(3-320) wy*+ (1= 0)y" = bor"F (141, y, y*) = 3.



ITERATED SPLITTING METHODS FOR TIME-DEPENDENT EQUATIONS 647
As we already observed, the parameters u; and A; are obtained from the Chebyshev
recursion formula, i.e.,

T;(wo) _ 2wy Wy = bta
b—a’

1
==(b+a)ro=1, u;=2w , A= 8
(3.32¢) Ho™2 ° H 07}+1(W0) " b+a

J=1,2,---,m—1,
where a and b are defined by

_(20-1)(25*+1) 2w-1
(S*+w)? ’ w

and where « and S* are related by (3.18).

Given a corrector formula (1.3) and a splitting function F(t, u, v) (see [4] for a
survey), the successive-correction-scheme is now completely determined if we specify
the predictor formula for y'®, the number of iterations m, and the frequency parameter
S*; this scheme will be denoted by SC (y'?, m, $*). It has already been observed that
the choice of (m, S*) also depends on the stability conditions. These conditions will
be given in § 4.1, and on the basis of these conditions we come to a definite choice of
(m, $*) in § 4.2.

3.2. Fractional steps.
3.2.1. Two-stage approximations. In this section it will be assumed that the
splitting function is of the special form (cf. [4])

(3.33) F(t,u, v)=f,(t, u)+ fo(t, v).

Examples of such splitting functions are the LOD splittings [11] and the hopscotch
splittings [1]. .
We define the operator L;':x -y in two steps (cf. (3.11)):

(3 34) wy+(1.—w)y*— bOTy[fl(trH'l’ y)+f2(tn+l’ y*)]= X,
. wy*+(1_w)y(j)—bOTny(tn+1’ }’*)=x

(3.32d)

Notice that the intermediate result y* is obtained by using only a “fraction” of the
right-hand side function f(¢, y).

A straightforward calculation reveals that the iteration matrix L' ™' L' is identical
to (3.12). Consequently, the analysis of the §§3.1.2 and 3.1.3 also applies to the
approximation (3.34) if Z;, and Z, are understood to be the Jacobian matrices of
bo7"fi(tn+1, ¥) and bo7"fa(ta+1, ¥), TESPECctively.

Verwer [8] studied the special case where w =1, 2=y, v=1, by=1 (backward
Euler) and where F(t, u, v) corresponds to an LOD splitting [11]. However, in that
case only eigenvectors of lowest frequency are damped, and just as in the case of
multistep splitting methods considered in [3], the convergence turns out to be rather
poor. Verwer therefore proposed the application of line Jacobi iteration after each
LOD iteration in order to damp eigenvectors of higher frequencies which indeed
improves the rate of convergence [9].

4. Stability. We recall that we want a relatively low number of iterations and
consequently the stability properties of y,,; = y"™ may considerably differ from those
of the exact solution n of the linear k-step formula (1.3). Therefore, we investigate
the sensitivity of y,., against perturbations Ay, of previous y,-values.

Our considerations will be confined to the SC (y'?, m, $*) method defined by
(3.32). It is convenient to write L;* as the operator K : (y', x) > y. Then (2.3) assumes
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the form (cf. 3.20))
(4.1) y(/‘+1) = (l*"i_Ai)y<i)+ (1 —/.Lj)y(i_l)+)L,;K(y(i), s),

where we used (2.5). Denoting the Jacobian matrices of K with respect to the successive
arguments by K| and K} we obtain the variational equation

(4.2) Ay == A+ LK JAY D + (1 — ) AyY ™V + LK 5AS.
From (3.11) it follows that
Ki=lo-Z] l-0o-ZJe-2Z] [1-w—-Z],
Ki=[o-Z ] U-[1-0-Z)0—2Z]"]
so that
(4.2") Ay = — L LAY + (1 — ) Ay ™V + 4K 5AS,

where L'7*L’ is given by (3.12).
We now use the following lemma (cf. [5]):
LemMa 4.1. For arbitrary vectors uy and v, the recurrence relation

(4.3) v =g~ Ae]o+ (M=) v+ Ay, j=0
is satisfied by
(4.4) Uj=Pj(a)Uo+ Qj(a)um
where P;(a) is defined by (2.6) and Q;(e) by
Q(a)= : *ij(a)-

Proof. By substitution of (4.4') into (4.3). 0O
Applying this lemma to (4.2) leads to the variational equation
Ay =Py (A)AY P + Qi (AK3AS,
(4.5) A=L"'L'=Quw-1No—-Z ] fo-2Z,]1"I~-Z,-2,),
Kjy=Qo-1[o—Z] [o-Z,]"
4.1. Stability analysis for model problems. In this section we assume that Z and

w—Z; share the same eigensystem with eigenvalues z; and z,. Assuming that y© is
computed by a formula of the form

k
(46) y(O) = IZ:I [ﬁlyn+1—l + Bﬂvf(tn+1—b yn+1—l)]

and substituting X into (4.5) according to (1.3), we arrive after m iterations at the
characteristic equation

k

. b a+b(z1+22)/ bo)
k. ) _ 1TO\Z, T Z3)/ Do
47) ¢ -EI{Pm(a)[a,+bo(z1+zz)]+[1 P, (a)] T—(z.%2) }{" g

where a is given by

QRo-1)1-z,—12,)
4.8 -
(48 SR P TR
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We define the stability region by the set of points (z,, z,) where (4.7) has its roots on
the unit disk.
An important class of methods uses extrapolation formulas for y, i.e. b;=0 for

I=1(1)k, and backward differentiation formulas for =, i.e. b, =0 for l— 1(1) k. Then
(4.7) reduces to

k

(4.7) =3 {azP G p—— [1 P (a)]}

=1

In order to illustrate this characteristic equation we derive the stability regions of
two well-known iterated integration formulas for first order equations.

Example 4.1. Consider Euler’s backward formula as the generating formula, i.e.
k=1and a; =1, and y'© =y, as predictor formula, i.e. 4, = 1. Evidently, the stability
region consists of the set of points (z,, z,) where

(4.9) )= |P.(a )+1——5ﬁ =1.
Z _Zz
For z;, z; =0 this yields the inequality
(4.10) 2_—__2_1_.2_1<p (2)=1
Z1+ 2z,

which is satisfied if 0= a = b (see Fig. 3.2). Since a=a =5 and a>0, b= b provided
o =1 we find that (4.9) is satisfied for all negative z; and z,. Furthermore, by virtue
of (2.16) the method is first order consistent. [

Example 4.2. Next we consider the two-step backward differentiation formula as
the generating formula, i.e. k=2, a; =%, a,=—3, and the predictor formula y® =
2Yn = Yn-1, 1.6. 4, =2, d,=—1, to obtain the characteristic equation

41— P, (a)] 1-P,(a) }=0

2_
(4.11) { {2Pm(a)+3(1-zl_22) 3(1—2,—2z,)

}§+{Pm(a)+

This equation has its roots on the unit disk if

3(21+22) 8<

(4.12) 9(21'["22) 4

m(a)“ 1

which is certainly satisfied for all negative z, and z, if —3= P,,(a) =1. From Fig. 3.2
and the discussion in the preceding example it follows that this inequality holds if w = 1
and D=1. Using Table 3.1 we can determine stable values for (m, $*). The order of
consistency equals 2 according to (2.16). We remark that D is not restricted if the
predictor y'© =y, would be used. O

Generally, the root condition for the characteristic equation (4.7) is satisfied if
the polynomial P,,(a) satisfies the condition

(4.13) -D,=P,(a)=D,, 0<D,=D,=1
for = a = b. From Fig. 3.2 it is clear that this condition is satisfied if

(4.14a) D=D,,
(4.14b) a=d where P, (d)=D,.



650 P. J. VAN DER HOUWEN

Substitution of (3.19) into (4.14a) and of (3.15) into (4.14b) yields

. Tyw(1/D)+1 _ ( 1 >
(4.14'a) o= Ton(1) Dy —cos (n/2m)’ T1/m(x) =cosh - arccosh x |,
(4.14'b) |
S+1 _1+wcos (w/2m) = (0 =1)Ty/m (D, T,,((w cos (m/2m) +1)/w—1))
($/2+w)* " w?(cos (7/2m) +1) )

This expresses the stability conditions in terms of w and m, or using (3.18) in terms
of S* and m.

For smooth problems the stability condition (4.14a) seems to be the thost important
one, because violating this condition means that instabilities are developed in the low
frequency components of the solution (recall that these components correspond to
eigenvalues « in the damping interval [a, b]). If (4.14a) is satisfied but (4.14b) is not,
then instabilities are developed only in the high frequency components of the solution.
Since we assumed the solution to be smooth these instabilities will not directly ruin
the numerical solution. Moreover, the characteristic roots do not increase polynomially
with z; and z, as the region of instability is entered, a situation which occurs in explicit
methods (all coefficients in (4.7) are bounded as z,, z; > —0). Therefore, the effect of
instabilities due to too large a time step can be removed by now and then performing
a smoothing operation on the numerical solution y,[2].

4.2. Determination of the iteration parameters m and S$*. The free iteration
parameters (m, $*) in the SC (y?, m, $*) method should satisfy the stability condition
(4.14"). In the (m, w)-plane this condition determines a stability region

(4.14") wim,S)=w=o(m),

where @(m) follows from (4.14'a) and where the function w(m,S) is implicitly
determined by (4.14'b). Using (3.18) the region (4.14") can be transformed into a
region in the (S*, m)-plane:

(4.15) S$*(m, $)= S*=S§*(m).

In Figure 4.1 two typical situations are illustrated. It should be noticed that for D, <1
the function $* depends on the problem parameter S:= b,7"c (recall that o is the
spectral radius of 9f/dy). From this figure we conclude that the number of iterations
m in a stable SC method is bounded below by m where m =1 if D,=1 and m is the
solution of

(4.16) §*(m, §)=S5*(m)

if D,<1. Evidently, m can be found by solving the equation w(m, S) = @(m). From
the definition of @ and & it follows that m is the solution of the equations (cf. (4.14"))

wz(S+1)(cos(7r/2m)+1)_ 1)\ D,
(@-1)(5/2+wy’ ‘T”"*( ) T”"'( )

D, D,
= Tym(1/Dy)+1
Ty/m(1/Dy)—cos (mw/2m)’

(4.17)

D,<1.
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S*
a
stability
region
(a)
m
N
[ 3
S$*(m) stability
region
(b)
! |
[}
! |
5 t > m
m

FIG. 4.1. a) Stability region for D,= 1, b) Stability region for D, <1.

The solution m depends on the problem parameter S and the quantities (D, D,)
determined by the predictor-corrector pair {y‘®, (1.3)}.

As an illustration, we give the values of m (when rounded to the first integer = the
exact value of m) as a function of S for the cases where (1.3) is the fourth-order
backward differentiation formula (BDF,) for first order ODEs and where y® corres-
ponds to an extrapolation formula of order g (we shall write y(o) = yf,o)). For g =0 and
g=1 it turns out that D,=1 (see also the Examples 4.1 and 4.2) so that m =1 for
all S. For ¢ =2 and g =3 we have respectively (Dy, D)= (1/7,.495) and (D, D,) =
(1/15,.199) which leads to the values listed in Table 4.1a.

The actual value of m should not be chosen larger than necessary for staying in
the stability region (4.15). From Fig. 4.1 it follows that the pair

(4.18) (m, §*)=(m, §*(m))

is stable and at the same time optimal in the sense that the number of iterations is
minimal. In Table 4.1b the values $*(m) are listed for y© =y, g=1, 2, 3, together
with the damping factor D = D, and the order p=g+1 (cf. (2.16)).
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TABLE 4.1a
Solution m of (4.17).

(0)

Y ¥s
S m(S) S m(S)
(0, 6.6] 1 (0,1.9] 1
(6.6, 47] 2 (1.9,12.5] 2
(47,198] 3 (12.5,52] 3
(198, 587] 4 (52,154] 4
(587,1391] 5 (154, 360] 5
(1391, 2836] 6 _(360,732] 6 .
S»1 8248 S§»1 1.17%S
TABLE 4.1b
Values of $*(m), D and p.
m=1 m=2 m=3 m=4 m=S5 m=6 m>»1 D p
¥ 2.96 33 157 486 1176 2425 1.85m* 1/3 2
yo 0.98 9.4 43 131 316 649  0.49m* 1/7 3
yo 0.48 4 18 54 129 264 0.20m* /15 4

5. Numerical experiments. Before giving results obtained by the “‘optimal” SC
method specified in § 4.2, we present in § 5.1 results obtained for various values of m
and S in order to illustrate the effect of these iteration parameters. In § 5.2 we will
compare the SC (y$, m, $*(m)) method with the ADI method of Peaceman and
Rachford [6] in nonlinear form:

(5-1) Y(O)= yn +%TF(tn+l/2s y(O): yn), yn+1 = y(0)+%TF(tn+19 y(O)’ yn+l)-

It can be considered as a splitting method which “solves” the trapezoidal rule by one
iteration.

The test problems are listed in Table 5.1. Initial conditions at ¢ =0 and Dirichlet
boundary conditions on the unit square 0=x;, x,=1 were taken from the exact
solutions and the functions v were chosen such that the exact solutions are given by
those listed in the table. These problems were semi-discretized using standard differen-
ces on a uniform grid with mesh spacing h.

TABLE 5.1
Test problems of the form U, = dA(U")+ (U, ) + (U,) +v.

Problem Solution d i j o
I 1+e " (x2+x3) 1 1 0 8h2
II 1+e " (x3+x3) (1+0)7! 1 2 Gerschgorin estimate
m 3(x; +x;) sin 277t a+tx)(1+n™ 3 0 =24 h™2(1+1)"" sin® 2mt

The starting values at t =—3h, —2h, —h, 0 were taken from the exact solution and
the splitting function F in the SC method is identical to that used in the ADI method.
The Jacobian matrices 9F/du and 9F/3v were derived by hand and updated at the
beginning of each integration step.
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In the tables of results the accuracy delivered by the various methods is measured
by the number of correct significant digits obtained in the end point t=1, i.e.

(5.2) sd = —log,, (maximum absolute error at t=1).

S.1. A linear problem. The matrix Z=b,r3f/dy corresponding to the semi-
discrete form of problem I has eigenfunctions of the form

(5.3) e, =sin (ikwh) sin (jlmh),

where (ih, jh) with i, j=1,2,- - -, h™'~1 refer to the grid points and k, / assume integer
values. The corresponding eigenvalues are given by

(5.4) 2z =[—4+2 cos (karh) + 2 cos (loh)]byth 2.

The initial error &, may be considered as an odd grid function (e, vanishes on the
boundary) and can therefore be expressed in terms of the eigenfunctions (5.3). Hence,
the SC (y{”, m, §*) method damps all frequencies which satisfy z,,€[~2S%*, 0] by at
least a factor D (see Fig. 3.3). If h?/r« 1 it follows from (5.4) that the damped
frequencies are those for which

* *
(5.5) K+ 1’= 25 2z.42§—.

b T

o T

Thus, for given values of 7 and S* those frequencies with k, [ =1,,:= J.21 S*/r are
damped (we observe that [,,, does not depend on h).

In the following tables the values of sd/D together with the corresponding values
of .. are listed for a few values of m and S*. Results obtained for (m, $*)-values
outside the stability region are indicated by an asterisk (see also Fig. 4.1). These results
show that:

(i) There seems to be optimal S*-value which for this problem corresponds to
a damping factor D€ (.15,.25) if m=2 and to De (.01,.05) if m=4.
(i)) Unstable integration does not ruin the solution in a few steps.

TABLE 5.2a
Problem 1; =1, r=h=15.

S*

0 10 20 40
m
2 2.3/0 3.0/.15 2.8/.25 2.7%1.37
4 2.8/0 4.3/.01 3.7/.02 3.3/.05
Las 0 4 6 8
TABLE 5.2b
Problem 1; g=1, r=2h=15.
s* 0 10 20 40
m
2 1.4/0 2.5/.15 2.8/.25 2.7%/.37
4 - 1.8/0 3.0/.01 3.5/.02 3.3/.05

0 4 6 8
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TABLE 5.3a
Problem 1; q=3, r=h=1;, S=38.4.

S*
0 4 10 20 40
m
2 3.9%/0 4.6%/.07 4.8%/.15 3.8%/.25 2.7*%/.37
4 4.4%/0 5.7%/.002 6.1/.01 5.8/.02 5.3/.05
Lo 0 2 4 6 8
TABLE 5.3b
Problem 1; =3, r=2h=45, §=153.6.
%
§ 0 4 10 40 50
m
2 3.2*/0 3.5%/.07 4.0%/.15 2.7%/.37 2.5%/.42
4 3.4%/0 4.2%/.002 4.5%/.01 5.3%/.05 5.2*/.07
Lo 0 2 4 8 10

The first observation is strongly problem-dependent. The optimal value of S* is
determined by the right compromise of the number of dominant eigenfunctions to be
damped and the damping factor D (note that the number of damped eigenfunctions
corresponding to the highest accuracy varies from 4 until 8).

The second observation implies that an underestimation of o, and consequently
an unstable pair (m, $*), is not toa serious. However, a large number of steps with
an unstable combination of the parameters m and S* finally leads to an unstable result
as is illustrated in Table 5.4, where the sd-values are listed obtained by the
SC (y¥”, 4, $*) method in 0=7=8. Theoretically, $*=40 and $*=80 should be
unstable and S$* =50 should be stable. The results confirm the stability theory, but
they also show that the instability is of a rather mild character.

TABLE 5.4
Stability test. Problem 1; 7=+, h =45, S=153.6.

Method t=1 t=2

t=3 t=4 t=5 t=6 t=7 t=8
SC (¥, 4,40) 5.3 5.7 6.1 6.1 5.7 5.5 4.9 4.7
SC (¥4, 4,50) 5.2 5.6 6.0 6.5 6.9 7.3 7.7 8.0
SC (y, 4, 80) 5.0 5.2 4.8 4.1 35 2.9 2.3 1.6

5.2. Comparison with the ADI method. In Tables 5.5, 5.6 and 5.7 the sd/m-
values are listed obtained by the SC (y{”, m, §*(m)) method and by the ADI method
(5.1) when applied to the problems I, II and III. Here, i =1 for the ADI method
and m is the average number of iterations per step for the SC method (recall that m
depends on S and may vary during the integration process).

In order to compare the efficiency of the two methods one should take into account
the computational effort per step. In addition to the iterations to be performed, both
methods require the evaluation of the Jacobian matrix used in the Newton iteration
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process and the LU-decompositions of the tridiagonal matrices. Thus, in the interpreta-
tion of the results listed in Tables 5.5, 5.6 and 5.7 the value of # gives not more than
an indication of the computational effort.

TABLE 5.5
sd/m values obtained for problem 1; h= 2.

Method 7=1/10 7=1/20 T=1/40 r=1/80 Pest

ADI 2.6/1 3.2/1 3.9/1 4.5/1 2

SC 5.1/5 6.3/4 7.4/4 8.6/3 4
TABLE 5.6

sd/m values obtained for problem 11; h=2;.

Method r=1/5 r=1/10 T7=1/20 T=1/40 7=1/80 Dest
ADI * * 2.0/1 3.6/1 4.3/1 2
SC 3.8/5.2 4.9/4.4 6.1/4 7.3/31 8.5/3 3.9

TABLE 5.7

sd/ m-values obtained for problem 111; h=33.

Method T=1/20 r=1/40 r=1/80 r=1/160 Pea
ADI * * 2.1/1 2.7/1 2
sC 3.0/4.3 4.5/3.4 6.0/2.8 7.4/2.4 4.7

In all problems the superiority of the SC method, particularly in the high accuracy
region, is evident. This is of course due to its fourth order behavior which is already
demonstrated for relatively large steps (we have listed the effective order peg:=
(sd(r)—sd(27))/logyo (2) in order to illustrate the order behavior). In this connection,
we remark that the fourth order successive-correction scheme analysed in [3] does not
show its fourth order unless 7o is rather small (7o =200). This scheme can be fitted
into the framework of the SC methods by putting y© =1y, and $*=0 (cf. [2]).

In problems II and III the nonlinear relations (3.32b) were solved by performing
just one Newton iteration. For too large an integration step both methods did not
work (indicated by an asterisk). The SC method, however, is more robust for larger
steps because the Jacobian matrix is evaluated at (2,41, y3”), whereas the ADI method
has to use Jacobian matrices evaluated at (2,, y,).

Problem II illustrates that the SC method, although designed for problems possess-
ing Jacobian matrices with a negative spectrum, can handle problems with “imaginary
noise” (the derivatives U,, and U,, introduce imaginary parts into the eigenvalues of
the matrix Z).

Problem III is rather nonlinear and has a rapidly changing spectral radius 0. The
SC method adapts the iteration parameters m and S$* to the value of S=1270/25,
so that this problem tests the SC method when applied with rapidly changing values
for m and S*.
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